
Circuit Analysis using Phasors, Laplace Transforms, and Network Functions 
 
 

A. Sinusoidal, steady-state analysis in the time domain: 
 

For the RL circuit shown,  KVL yields the 
following differential equation for i(t): 
 

 

 
This can solved by assuming i(t) to be of the form: 
 

 
 
Substituting this into the differential equation yields: 
 

 
 
Using the trig identities for  and makes this equation read 
 

 
 
Equating the and terms on the right and left sides yields 
 

 and  
 
These are easily solved for Im and q, yielding 
 

  and  ,  

 
so the final solution for i(t) is 

 

 

 
This is the correct solution, but it was a lot of work due to the need for trig identities 

to deal with the phase shift caused by the inductor.  The same technique could be used in 
a network with multiple inductors and capacitors, but that would result in a much higher-
order differential equation, and therefore, a similar, but much more messy, solution 
procedure. 
 
Is there a better way? 
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B. Sinusoidal, steady-state analysis using complex-exponential sources 
 

An improved way of solving this problem is to replace the voltage source  
with its complex-valued “cousin” .  We know from Euler’s identity that 
 
  
 
For this replacement, we can re-draw the schematic 
as shown below.   Here, the complex-valued source 
is shown as two sources – one real, and the other 
imaginary.  Using the concept of superposition, we 
can reason that the real-valued source will drive a 
real-valued current , and the imaginary-valued 
source will drive an imaginary-valued current .  
We’re interested in the response of this circuit due to 
the real-valued source, so 
 

 
 

where  is the sum of the real and imaginary currents.  For this complex-valued 
source, the differential equation for is: 
 

  

 
To find , we can assume it, like the source, is also a complex exponential function of 
time: 
 

 
 

Substituting this into the differential equation, we obtain: 
 

 
 
Each term in this equation contains , so it can be dropped, yielding 
 

 
 

Interestingly, this expression does not contain the time variable t.  Solving for , we 
have: 
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so 

 and  

 
Thus, the complex current  is: 
 

  

 
and, since , we finally obtain (using Euler’s identity): 
 

 

 
which is the same solution we found using standard time-domain techniques, but without 
the need for trig identities for handling phase-shifted sines and cosines.  This is because 
the time derivative of is simply the same function multiplied by .  And, the 
solution procedure would not significantly increase in difficulty as more inductors and 
capacitors were added, since an nth order derivative of is simply times the same 
function. 
 

C. Sinusoidal, steady-state analysis using Phasors 
 

Although the use of complex-exponential sources has yielded an improved way of 
finding the steady-state response of a circuit, we can go further.  Looking back at the 
differential KVL equation we obtained for the RL circuit for a complex-exponential 
source, 
 

 , 

 
we found that when we assumed the solution to be of the form , yielded 
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If we now define the term to be a phasor, which is a complex number that has a 
magnitude Im equal to the peak amplitude of i(t), and phase q equal to the phase of i(t).  
Using this definition of of I, we can write 
 

 
 

which is a KVL expression that describes the circuit shown 
below,  where the inductor is now represented as an “Ohmic” 
component with value jwL,the resistor is still a “resistor,” and 
the sinusoidal voltage source is represented as the phasor  

(in Volts).  This circuit is called the phasor-domain 
representation of the original time-domain circuit.   
 

The beauty of the phasor-domain circuit is that it is 
described by algebraic KVL and KCL equations with time-invariant sources, not 
differential equations of time.  The only “cost” is that the impedances of the inductors 
and capacitors are now complex-valued, so the resulting KVL equations involve complex 
numbers.  But this is a very small cost to rid ourselves having to use trig identities to 
handle the phase-shifted sines and consines when inductors and capacitors are present. In 
general, phasor analysis proceeds according to the following steps: 
 

1) Represent the time-domain circuit in the phasor domain by treating resistors, 
inductors and capacitors as “Ohmic” components with impedances (in Ohms) of 

value R, and , respectively. 

2) Represents all the sinusoidal steady-state voltages and currents as phasors 
according to the rule: 

 

 

 
3) Write KVL and KCL equations for the unknown current and voltage phasors and 

solve for their values. 
4) Obtain the time-domain voltage and currents from their phasors. 
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D. Laplace analysis 
 

We can analyze the same RL network (or any other linear network) using Laplace 
analysis.  Laplace analysis can be used for any network with time-dependant sources, but 
the sources must all have values of zero for .  This analysis starts by writing the 
time-domain differential equations that describe the network.  For the RL network we’ve 
been considering, this KVL differential equation is: 
 

, 

 
where is now considered to be any Laplace-
transformable function of time, which is zero  for t < 0.  
The Lapace transform of this equation is: 
 

 
 
where I(s) and Vs(s) are the Laplace transforms of i(t) 
and Vs(t), respectively, and  is the current flowing 
in the inductor at .  This KVL equation suggests 
the following Laplace-domain circuit.  Here, the 
inductor appears as the series combination of two 
components: an “Ohmic” component of value sL, and a 
voltage source of value Li(0-). 
 

This Laplace transformed KVL equation can be solved for I(s) algebraically: 
 

 

 
The desired response i(t) is simply the inverse Laplace transform of I(s).   

t < 0
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a) Steady State Case 
 

As an example, we can find the sinusoidal steady-state response of this network by 
choosing the source to be  , where is the unit step function.  
The Laplace transform of this voltage is: 

 

 
 

Substituting this into the expression for yields: 
 

 

 
The first fraction on the right-hand side can be expanded as two terms, yielding: 
 

 , 

 
where a, b, and c are yet to be determined constants.  Using the rules of partial fraction 
expansion, these constants are found to be: 
 

    

 
 
The 2nd and 3rd right-hand terms in the I(s) expression both correspond to decaying 

exponentials of the form , so they have no part in the steady state response.  
Ignoring these terms, we find that the steady state response is: 
 

 

 

which yields: 

=  for t >0 

Using the values of a and b found earlier, this yields, after some trig identities: 
 

 for t >0 

 
which is the same result as was found more simply using phasor analysis.  Of course, the 
difference here is that Laplace analysis can also give us the transient response. 
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b) Step Response Case 
 

As another example, let us consider the response of the same RL network when 

, where  is the unit step function, then , so 

 

 
whose inverse-Laplace transform is: 
 

     for t >0  , where  

 
 

E. Network Functions 
 

A concept that is useful in both Phasor and Laplace analysis is that of a network 
transfer function, which relates an input variable (a voltage or current source) to an 
output varialble (some voltage or current).  This is depiced in the figure below. 

 
 
 
 
 
 

Here, it assumed that the network is linear and contains no independent sources (although 
it can contain dependant sources).  x(t) is considered to be the input waveform (either a 
voltage or a current) and y(t) is an output waveform (again, either a voltage or a current). 
 

For the case where x(t) is a continuous sinusoid, the phasors X and Y that represent 
x(t) and y(t), respectively, are always related by:  
 
  
 
where is the network transfer function.  For any collection of resistors, capacitors, 
and inductors,  is always a ratio of polynomials of the frequency w, with 
coefficients determined by the various component values in the network.   For the case of 
the RL network we considered earlier, where the voltage source is the input (x(t)) and the 
current i(t) is the output (y(t)), we have 
 

  (RL network) 
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Similarly, when x(t) is arbitrary (but Laplace-transformable) and there are no non-
zero initial conditions in the network, X(s) and Y(s) are related by a similar expression 
 

 
 

Again, for the case of RL network, we find 
 

  (RL network) 

 
As can be seen, the network transfer functions H(w) and H(s) for the RL network 

are the same function, except that the jw terms in the former appear as s terms in the 
latter.  This is no accident.  In fact, it is relatively simple to show that this is true for any 
linear network containing resistors, capacitors, inductors, and dependant sources. 

 
If the network transfer function is known, the output of any Laplace-transformable 

input can by found – in two ways.  The first is by taking the inverse-Laplace transform of 
.  For example, consider the response of the RL network to a unit step 

function input when there are no initial conditions..  (We will from now on call this the 

Step Response of the network).  In this case,  and , so  

   (RL network) 

 
Another way of obtaining this same result is to use the Laplace convolution 

theorem, which states that the inverse transform of a product of s-domain functions 
equals the convolution of the two time-domain functions.  In our case, this means that: 
 

 Laplace Convolution theorem 

 
where h(t) is the inverse-Laplace transform of the network transfer function H(s). 
 

As an example, for the RL network we’ve been discussing. 
 

 

  , where  
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Using this, we can find the step-response of the RL network: 
 

  

 

but since for all l >0 and equals 1 for 0< l < t and 0 for l  >t , this 
becomes 
 

 ,   (RL network) 

 
which is the same result found before using the inverse Laplace transform technique. 
 
 

E. Network Impulse Response 
 
 

We have already seen that the output Y(s) of any linear network with network 
transfer function H(s) and input X(s) is: 

 
 

 
From this, it is obvious that Y(s) and H(s) will be identical when X(s) is unity.  This 
happens when x(t) is the impulse function d(t), since  
 

 
 

So, when the input to a linear network is the impulse function, the output is: 
 

  (impulse response) 
 

In the case of the RL network we’ve been considering,  
 

 

 
 

This response is unusual, since, unlike the step 
response, it has a nonzero value at t =0+.  The 
reason why this happens is that even though the 
impulse source is on for an infinitesimal time, its 
amplitude during this time is infinite, resulting in 
a step change of i from t =0- to t =0+  
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